177 research outputs found

    Magnetic anisotropy of the spin ice compound Dy2Ti2O7

    Get PDF
    We report magnetization and ac susceptibility of single crystals of the spin ice compound Dy2Ti2O7. Saturated moments at 1.8 K along the charasteristic axes [100] and [110] agree with the expected values for an effective ferromagnetic nearest-neighbor Ising pyrochlore with local anisotropy, where each magnetic moment is constrained to obey the `ice-rule'. At high enough magnetic fields along the [111] axis, the saturated moment exhibits a beaking of the ice-rule; it agrees with the value expected for a three-in one-out spin configuration. Assuming the realistic magnetic interaction between Dy ions given by the dipolar spin ice model, we completely reproduce the results at 2 K by Monte Carlo calculations. However, down to at least 60 mK, we have not found any experimental evidence of the long-range magnetic ordering predicted by this model to occur at around 180 mK. Instead, we confirm the spin freezing of the system below 0.5 K.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Persistent supersolid phase of hard-core bosons on the triangular lattice

    Full text link
    We study hard-core bosons with unfrustrated hopping (tt) and nearest neighbour repulsion (UU) on the triangular lattice. At half-filling, the system undergoes a zero temperature (TT) quantum phase transition from a superfluid phase at small UU to a supersolid at Uc4.45U_c \approx 4.45 in units of 2t2t. This supersolid phase breaks the lattice translation symmetry in a characteristic 3×3\sqrt{3} \times \sqrt{3} pattern, and is remarkably stable--indeed, a smooth extrapolation of our results indicates that the supersolid phase persists for arbitrarily large U/tU/t.Comment: 4 pages, 5 figures, two column forma

    Continuous thermal melting of a two-dimensional Abrikosov vortex solid

    Full text link
    We examine the question of thermal melting of the triangular Abrikosov vortex solid in two-dimensional superconductors or neutral superfluids. We introduce a model, which combines lowest Landau level (LLL) projection with the magnetic Wannier basis to represent degenerate eigenstates in the LLL. Solving the model numerically via large-scale Monte Carlo simulations, we find clear evidence for a continuous melting transition, in perfect agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory and with recent experiments.Comment: 4 pages, 2 figures; published versio

    Classical Topological Order in Kagome Ice

    Full text link
    We examine the onset of classical topological order in a nearest-neighbor kagome ice model. Using Monte Carlo simulations, we characterize the topological sectors of the groundstate using a non-local cut measure which circumscribes the toroidal geometry of the simulation cell. We demonstrate that simulations which employ global loop updates that are allowed to wind around the periodic boundaries cause the topological sector to fluctuate, while restricted local loop updates freeze the simulation into one topological sector. The freezing into one topological sector can also be observed in the susceptibility of the real magnetic spin vectors projected onto the kagome plane. The ability of the susceptibility to distinguish between fluctuating and non-fluctuating topological sectors should motivate its use as a local probe of topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure

    Valence Bond Solids and Their Quantum Melting in Hard-Core Bosons on the Kagome Lattice

    Get PDF
    Using large scale quantum Monte Carlo simulations and dual vortex theory we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest neighbor repulsion. In contrast to the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half-filling, two novel solid phases emerge at densities ρ=1/3\rho=1/3 and ρ=2/3\rho=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid.Comment: 4 pages, 7 figure
    corecore